Growth factor signaling in lung morphogenetic centers: automaticity, stereotypy and symmetry
نویسندگان
چکیده
Lung morphogenesis is stereotypic, both for lobation and for the first several generations of airways, implying mechanistic control by a well conserved, genetically hardwired developmental program. This program is not only directed by transcriptional factors and peptide growth factor signaling, but also co-opts and is modulated by physical forces. Peptide growth factors signal within repeating epithelial-mesenchymal temporospatial patterns that constitute morphogenetic centers, automatically directing millions of repetitive events during both stereotypic branching and nonstereotypic branching as well as alveolar surface expansion phases of lung development. Transduction of peptide growth factor signaling within these centers is finely regulated at multiple levels. These may include ligand expression, proteolytic activation of latent ligand, ligand bioavailability, ligand binding proteins and receptor affinity and presentation, receptor complex assembly and kinase activation, phosphorylation and activation of adapter and messenger protein complexes as well as downstream events and cross-talk both inside and outside the nucleus. Herein we review the critical Sonic Hedgehog, Fibroblast Growth Factor, Bone Morphogenetic Protein, Vascular Endothelial Growth Factor and Transforming Growth Factorbeta signaling pathways and propose how they may be functionally coordinated within compound, highly regulated morphogenetic gradients that drive first stereotypic and then non-stereotypic, automatically repetitive, symmetrical as well as asymmetrical branching events in the lung.
منابع مشابه
Regulation of Bone Metabolism
Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...
متن کاملFibroblast growth factor interactions in the developing lung
Cellular activities that lead to organogenesis are mediated by epithelial-mesenchymal interactions, which ultimately result from local activation of complex gene networks. Fibroblast growth factor (FGF) signaling is an essential component of the regulatory network present in the embryonic lung, controlling proliferation, differentiation and pattern formation. However, little is known about how ...
متن کاملEnhanced endogenous bone morphogenetic protein signaling protects against bleomycin induced pulmonary fibrosis
BACKGROUND Effective treatments for fibrotic diseases such as idiopathic pulmonary fibrosis are largely lacking. Transforming growth factor beta (TGFβ) plays a central role in the pathophysiology of fibrosis. We hypothesized that bone morphogenetic proteins (BMP), another family within the TGFβ superfamily of growth factors, modulate fibrogenesis driven by TGFβ. We therefore studied the role of...
متن کاملSingle Nucleotide Polymorphism Analysis of the Bone Morphogenetic Protein Receptor IB and Growth and Differentiation Factor 9 Genes in Rayini Goats (Capra hircus)
The FecB, a mutation in the bone morphogenetic protein receptor IB (BMPR-IB) gene, which increases the fecundity of Booroola Merino sheep, and FecGH, a mutation in the Growth and Differentiation Factor 9 (GDF9), which affects the fecundity of Cambridge and Belclare sheep in a dose sensitive manner, were analyzed as candidate genes associated with the prolificacy in Rayini goats. These polymorph...
متن کاملSignaling to the epithelium is not sufficient to mediate all of the effects of transforming growth factor β and bone morphogenetic protein 4 on murine embryonic lung development
Many studies have suggested that transforming growth factor beta (TGF-beta) and bone morphogenetic protein 4 (Bmp4) regulate early development of the lung. In this study, administration of growth factors directly into the lumen of lungs grown in organ culture was used to limit their activity to the epithelium and test the hypothesis that signaling to the epithelium is sufficient to mediate the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Respiratory Research
دوره 4 شماره
صفحات -
تاریخ انتشار 2003